Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1995 Feb;177(4):1023-9.

Regulation of the molybdate transport operon, modABCD, of Escherichia coli in response to molybdate availability.

Author information

Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.


The mod (chlD) locus at 17 min on the Escherichia coli chromosome encodes a high-affinity molybdate uptake system. To further investigate the structure and regulation of these genes, the DNA region upstream of the previously identified modBC (chlJD) genes was cloned and sequenced. A single open reading frame, designated modA, was identified and appears to encode a periplasmic binding protein for the molybdate uptake system. To determine how the mod genes are regulated in response to molybdate, nitrate, and oxygen, we constructed a series of mod-lacZ operon fusions to the upstream region and introduced them in single copy onto the E. coli chromosome. Whereas molybdate limitation resulted in elevated mod-lacZ expression, neither oxygen nor nitrate had any significant effect on gene expression. A regulatory motif, CATAA, located at the modA promoter was identified and shown to be required for molybdate-dependent control of the modABCD operon. Mutations within this sequence resulted in nearly complete derepression of gene expression and suggest that transcription of the operon is mediated by a molybdenum-responsive regulatory protein.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center