Format

Send to

Choose Destination
Mol Cell Biochem. 1994 Aug 17;137(1):9-16.

Biochemical mechanism of irreversible cell injury caused by free radical-initiated reactions.

Author information

1
Department of Physiology and Biophysics and Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555.

Abstract

Effects of oxidative stress on isolated rat ventricular myocytes were studied. Myocyte viability was determined by the ability of these cells to retain rod-shaped morphology and to exclude trypan blue. The mean life time of myocytes was quantitated using the Weibull distribution function. Superfusion with 200 microM tert-butyl hydroperoxide (t-BHP) led to a time-dependent loss of cell viability, generation of the products of lipid peroxidation, oxidation of protein and non-protein thiols, a decrease in [ATP]i and in the cellular energy charge. Dithiothreitol (DTT, 5 mM) prolonged survival of myocytes exposed to t-BHP, attenuated oxidation of protein and non-protein thiols, and preserved the energy charge. Exposure to DTT did not affect the concentration of t-BHP-generated lipid peroxidation products. Promethazine (1 microM) prevented t-BHP-induced increase in the concentration of lipid peroxidation products, but did not prevent either loss of thiols or loss of cell viability. Superfusion with N-ethylmaleimide (NEM, 5 microM) also led to loss of cell viability, with accompanying decreases in protein and non-protein thiols, ATP and energy charge without the accumulation of the products of lipid peroxidation. Superfusion with FeSO4 (400 microM) and ascorbate (1 mM), (Fe-Asc) did not result in loss of cell viability or a decrease protein thiols or the energy charge. Superfusion with Fe-Asc, did, however, lead to a slight decrease in the concentration of non-protein thiols and ATP and a large increase in the concentration of lipid peroxidation products. Accumulation of lipid peroxidation products induced by Fe-Asc was prevented by promethazine.(ABSTRACT TRUNCATED AT 250 WORDS).

PMID:
7845383
DOI:
10.1007/bf00926034
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center