Format

Send to

Choose Destination
Exp Brain Res. 1994;101(1):153-8.

Quantification of D- and I-wave effects evoked by transcranial magnetic brain stimulation on the tibialis anterior motoneuron pool in man.

Author information

1
Orthopädische Universitätsklinik, Magdeburg, Germany.

Abstract

Transcranial stimulation in man evokes multiple descending volleys in the spinal cord giving rise to multiple subpeaks in a peri-stimulus-time histogram (PSTH) obtained from a cross-correlation of motor unit discharges with transcranial stimuli. The first volley is termed the D wave, as it is assumed to be evoked by direct excitation of pyramidal tract neurons, whereas the subsequent I waves appear to be generated by indirect excitation of the pyramidal tract neurons via cortical interneurons. It was the aim of this study to obtain an estimate of the effect induced by multiple volleys evoked by transcranial magnetic stimulation on the entire motoneuron pool of the tibialis anterior in awake subjects. A considerable part of a particular motoneuron pool was investigated by sampling responses of a large number (at least 19) from each muscle investigated. In total, three tibialis anterior muscles from three normal volunteers were studied. From each of the 63 units included in this study, a PSTH to 100 transcranial magnetic stimuli and a PSTH to 100 electrical stimuli given to the peroneal nerve were compiled. From the motor unit response to the peripheral nerve stimulation, the latency of the single-unit H reflex peak was obtained. This yielded, the timing of the subpeaks in response to the magnetic stimulation relative to the timing of the H reflex of the same unit, thus eliminating the influence of the peripheral conduction time from the motoneuron to the recording electrode. It was found that 50 (79%) of the motor units exhibited at least two subpeaks in response to the cortical stimulus.(ABSTRACT TRUNCATED AT 250 WORDS).

PMID:
7843294
DOI:
10.1007/bf00243225
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center