Format

Send to

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 1994 Oct;77(4):1885-9.

Human skeletal muscle adaptation in response to chronic low-frequency electrical stimulation.

Author information

1
Physical Activity Sciences Laboratory, Laval University, St Foy, Quebec, Canada.

Abstract

The purpose of the study was to verify the influence of several weeks of chronic low-frequency electrical stimulation (LFES) on the metabolic profile and functional capacity of human skeletal muscle. Knee extensor muscles (KEM) of eight subjects were electrically stimulated at 8 Hz for 8 h/day and 6 days/wk. Vastus lateralis muscle samples were taken before, after 4 wk, and after 8 wk of LFES, and activities of anaerobic (creatine kinase, phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase) and aerobic-oxidative (citrate synthase, 3-hydroxyacyl-CoA dehydrogenase, cytochrome-c oxidase) enzyme markers were determined. KEM dynamic performance was also assessed before, after 4 wk, and after 8 wk of LFES. Activity levels of anaerobic enzymes were not altered, whereas the activity levels of citrate synthase (29%),3-hydroxyacyl-CoA dehydrogenase (22%), and cytochrome-c oxidase (25%) were significantly increased after 4 wk of LFES but were not further increased after 4 additional wk of LFES. KEM performance was also improved (P < 0.05) but leveled off after 4 wk of LFES. Although significant changes were observed, the results of the present study suggest that the muscle characteristics investigated in the current study have a limited capacity of adaptation in response to this form of chronic LFES.

PMID:
7836213
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center