Send to

Choose Destination
Eur J Cancer. 1994;30A(10):1564-70.

A novel microculture kinetic assay (MiCK assay) for malignant cell growth and chemosensitivity.

Author information

Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Israel.


The THERMOmax microplate reader was adapted for monitoring the growth kinetics of human leukaemic OCI/AML-2 and mouse tumour J-774.1 cell lines in continuous culture. Fluid evaporation from wells, CO2 escape and contamination were prevented by hermetic sealing of the microcultures in wells of a 96-well microplate, thus enabling the cells to grow exponentially for 72 h under the conditions of the incubated microplate reader. For both OCI/AML-2 cells, which grow in suspension, and adherent J-774.1 cells, a linear correlation was demonstrated between the number of unstained cells seeded in a given microplate well and the optical density (OD) of that well. Therefore, the OD/time curve of the culture could be deemed to be its growth curve. By the use of the linear fit equation, the actual number of the cells in the wells was computable at any time point of the assay. In the chemosensitivity test, an inhibitory effect of ARA-C on the growth of the cells could be estimated by viewing of the growth curves plotted on the screen. The maximum kinetic rates (Vmax) of the curves in the control and the ARA-C-treated wells were compared, yielding a growth inhibition index (GII). Comparison of results of the kinetic chemosensitivity assay with those of a [3H]thymidine incorporation assay revealed that the novel assay is suitable for precise quantitation of the cell chemosensitivity, is more informative and has the added technical advantage of performance without recourse to radioactive or chemically hazardous substances.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center