Format

Send to

Choose Destination
See comment in PubMed Commons below
Development. 1994 Dec;120(12):3519-28.

FGF2 regulates proliferation of neural crest cells, with subsequent neuronal differentiation regulated by LIF or related factors.

Author information

1
Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia.

Abstract

Two of the key early events in the development of the peripheral nervous system are the proliferation of neural crest precursor cells and their subsequent differentiation into different neural cell types. We present evidence that members of the fibroblast growth factor family, (FGF1 or FGF2) act directly on the neural crest cells in vitro to stimulate proliferation in the presence of serum. These findings correlate with in situ hybridisation analysis, which shows FGF2 mRNA is expressed in cells both in the neural tube and within newly formed sensory ganglia (dorsal root ganglia, DRG) at embryonic day 10 in the mouse, when neural crest precursors are proliferating within the DRG. This data infers an autocrine/paracrine loop for FGF regulation of proliferation. Evidence supporting this notion is provided by the finding that part of the endogenous proliferative activity in the NC cultures is related to FGF. It was also found, in early neural crest cultures, that exogenous FGF completely inhibited neuronal differentiation, probably as a direct consequence of its mitogenic activity. In order to stimulate neuronal differentiation significantly, it was necessary to remove the FGF and replace it with leukemia inhibitory factor (LIF) or related factors. Under these conditions, 50% of the cells differentiated into neurons, which developed a sensory neuron morphology and were immunoreactive for the sensory markers CGRP and substance P. These data support a model of neural crest development, whereby multipotential neural crest precursor cells are stimulated to divide by FGF and subsequent development into sensory neurons is regulated by LIF or other cytokines with a similar signalling mechanism.

PMID:
7821219
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center