Send to

Choose Destination
Anat Embryol (Berl). 1994 Aug;190(2):113-25.

Factors causing different properties at neuromuscular junctions in fast and slow rat skeletal muscles.

Author information

Department of Anatomy, University of Oslo, Blindern, Norway.


Neuromuscular junctions on fast and slow skeletal muscle fibers have different properties. Possible reasons for these differences were examined in adult rat soleus (SOL) muscle fibers reinnervated at new ectopic or old denervated sites by fast fibular (FIB) or slow SOL motoneurons. FIB motoneurons formed large ectopic junctions with a high density of nerve terminal varicosities (fast appearance), whereas SOL motoneurons formed small ectopic junctions with a low density of varicosities (slow appearance). Both FIB and SOL motoneurons formed small junctions with a slow appearance when reinnervating old SOL endplates. FIB nerves innervating ectopic sites and SOL nerves reinnervating old sites had the same appearance whether they contacted the SOL fibers alone (single innervation) or together (dual innervation). Continuous stimulation of the FIB nerve at 10 Hz for 3-4 months reduced the size of ectopic FIB and intact extensor digitorum longus (EDL) junctions and caused a modest reduction in density of terminal varicosities in EDL. Junction size and muscle fiber diameter were positively correlated, but the slope describing this relation was steeper for FIB junctions than for SOL junctions. It is concluded that in the present system (1) motoneuron type and not muscle fiber type determines the fast or slow character of the neuromuscular junction. (2) denervated endplates of one type place stable and severe constraints on the termination pattern of reinnervating axons of another type, (3) the appearance of fast EDL junctions undergoes a modest fast to slow transformation when exposed to long-term slow pattern stimulation, and (4) not only the size of the muscle fibers, but also the type and firing pattern of the motoneurons and the spatial constraints at preformed endplates influence the relation between junction size and muscle fiber diameter.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center