Send to

Choose Destination
J Comp Neurol. 1994 Oct 1;348(1):80-93.

Crustacean cardioactive peptide-immunoreactive neurons in the ventral nervous system of crayfish.

Author information

Institut für Zoophysiologie, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany.


Crustacean cardioactive peptide-immunoreactive neurons have been mapped in whole-mount preparations and sections of the ventral nervous system of the crayfish Astacus astacus and Orconectes limosus. Based on their morphology, projection patterns, and staining characteristics, two types of contralaterally projecting neurons are individually identifiable. In both species, these neurons occur in all neuromers as apparent serial homologs. In adult specimens, one type of cell has a small, densely stained dorsal lateral perikaryon, and a descending axon, and appears to be an interneuron. Each neuromer contains a single pair of these cells. Only in maxillary ganglia, these cells may have an additional ascending projection. The other type, a neurosecretory cell, has a larger, weakly stained perikaryon and a projection to the segmental third root of the next anterior neuromer. All neuromers contain a single pair of these neurons adjacent to the interneurons except for the abdominal neuromers, which contain two pairs of the neurosecretory cells. Central arborizations and varicose processes toward the surface of the third roots and within the perineural sheath of the ventral nerve cord arise from these neurons. Electron microscopy of granule-containing terminals substantiated that these newly discovered extensive neurohemal areas are release sites for the peptide. In young immature specimens, the perikarya of both neuron types do not differ in size. Additional weakly stained small perikarya occur in all neuromers of Astacus astacus. These two types of crayfish neurons and other comparable aminergic and peptidergic neurons of crayfish and lobster are differentially distributed in the ventral cord. Furthermore, comparison of similar neuron types in crab, locust, meal worm, and moth species indicates intra- and interphyletic structural homologies.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center