Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1995 Jan;177(2):449-58.

A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer.

Author information

Department of Plant Pathology, University of Illinois at Urbana-Champaign 61801.


Conjugal transfer of the Agrobacterium tumefaciens nopaline-type Ti plasmid pTiC58 is induced by agrocinopines A and B, opines secreted by crown gall tumors induced by the bacterium. This regulation functions through the transcriptional repressor, AccR. However, actual transcription of the tra genes is regulated by autoinduction through the activator TraR and the substituted homoserine lactone second messenger, Agrobacterium autoinducer (AAI). We have identified a new regulatory element that modulates the response of TraR to AAI. The gene, called traM, suppresses TraR-AAI activation of transcription of tra genes carried on recombinant clones. The suppression could be relieved by increasing the expression of TraR but not by increasing AAI levels. traM is located between traR and traAF on pTiC58 and is transcribed in the clockwise direction. The 306-bp gene encodes an 11.2-kDa protein showing no significant relatedness to other proteins in the databases. Mutations in traM in pTiC58 conferred a transfer-constitutive phenotype, and strains harboring the Ti plasmid produced easily detectable amounts of AAI. These same mutations engineered into the transfer-constitutive Ti plasmid pTiC58 delta accR conferred a hyperconjugal phenotype and very high levels of AAI production. Expression of traM required TraR, indicating that transcription of the gene is regulated by the autoinduction system. TraM had no effect on the expression of traR, demonstrating that the suppressive effect is not due to repression of the gene encoding the activator. These results suggest that TraM is not a direct transcriptional regulator. Since the suppressive effect is demonstrable only when traM is overexpressed with respect to traR, we suggest that TraM functions to sequester TraR from the very small amounts of AAI produced under conditions when the agrocinopines are not present.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center