Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1995 Jan;15(1):345-50.

Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2.

Author information

1
Department of Physiology, University of California, San Francisco 94143-0444.

Abstract

The cyclin-dependent protein kinases (CDKs) are activated by association with cyclins and by phosphorylation at a conserved threonine residue by the CDK-activating kinase (CAK). We have studied the binding of various human CDK and cyclin subunits in vitro, using purified proteins derived from baculovirus-infected insect cells. We find that most CDK-cyclin complexes known to exist in human cells (CDC2-cyclin B, CDK2-cyclin A, and CDK2-cyclin E) form with high affinity in the absence of phosphorylation or other cellular components. One complex (CDC2-cyclin A) forms with high affinity only after CAK-mediated phosphorylation of CDC2 at the activating threonine residue. CDC2 does not bind with high affinity to cyclin E in vitro, even after phosphorylation of the CDC2 subunit. Thus, phosphorylation is of varying importance in the formation of high-affinity CDK-cyclin complexes.

PMID:
7799941
PMCID:
PMC231966
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center