beta-Tubulin mutation suppresses microtubule dynamics in vitro and slows mitosis in vivo

Cell Motil Cytoskeleton. 1995;30(4):285-300. doi: 10.1002/cm.970300406.

Abstract

Microtubule (MT) dynamics vary both spatially and temporally within cells and are thought to be important for proper MT cellular function. Because MT dynamics appear to be closely tied to the guanosine triphosphatase (GTPase) activity of beta-tubulin subunits, we examined the importance of MT dynamics in the budding yeast S. cerevisiae by introducing a T107K point mutation into a region of the single beta-tubulin gene, TUB2, known to affect the assembly-dependent GTPase activity of MTs in vitro. Analysis of MT dynamic behavior by video-enhanced differential interference contrast microscopy, revealed that T107K subunits slowed both the growth rates and catastrophic disassembly rates of individual MTs in vitro. In haploid cells tub2-T107K is lethal; but in tub2-T107K/tub2-590 heterozygotes the mutation is viable, dominant, and slows cell-cycle progression through mitosis, without causing wholesale disruption of cellular MTs. The correlation between the slower growing and shortening rates of MTs in vitro, and the slower mitosis in vivo suggests that MT dynamics are important in budding yeast and may regulate the rate of nuclear movement and segregation. The slower mitosis in mutant cells did not result in premature cytokinesis and cell death, further suggesting that cell-cycle control mechanisms "sense" the mitotic slowdown, possibly by monitoring MT dynamics directly.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Microscopy, Video
  • Microtubules / physiology*
  • Mitosis / genetics
  • Molecular Sequence Data
  • Plasmids
  • Point Mutation
  • Saccharomyces cerevisiae / physiology*
  • Tubulin / genetics
  • Tubulin / metabolism

Substances

  • Tubulin