Send to

Choose Destination
Biochemistry. 1995 Jun 27;34(25):8028-36.

Transcriptional regulation of human CYP2C genes: functional comparison of CYP2C9 and CYP2C18 promoter regions.

Author information

National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.


The cytochrome P4502C subfamily comprises a group of constitutive microsomal hemoproteins which are expressed primarily in liver. In humans, this subfamily is responsible for metabolism of a variety of therapeutic drugs such as warfarin, mephenytoin, omeprazole, and antiinflammatory drugs. In the present study, we analyzed the promoter activity of the 5'-flanking region of two human CYP2C genes, CYP2C9 and CYP2C18. The ability of the 2.2-kb 5'-flanking region of the CYP2C9 gene to direct expression of a luciferase reporter gene in HepG2 cells was 25 times greater than that of the 1.3-kb 5'-flanking region of CYP2C18. Deletional analysis of CYP2C9 indicated that the minimal promoter was located between the translation start site and nucleotide -155, and an HPF-1 domain consensus sequence was identified in this region. Gel shift analysis demonstrated that nuclear proteins from HepG2 cells had a high binding affinity for a 20-bp oligonucleotide containing the HPF-1 site of CYP2C9. Antiserum to rat HNF-4 supershifted this DNA--protein complex, and an oligonucleotide derived from an HNF-4 motif present in the human apolipoprotein CIII promoter competed for the supershifted complex. Cotransfection with an HNF-4 expression plasmid increased transcriptional activity of the CYP2C9 minimal promoter (approximately 2-fold) in HepG2 cells and elevated activity more substantially in nonhepatic NIH3T3 cells (26-fold) and Cos 1 cells (9-fold).(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center