Send to

Choose Destination
Genomics. 1995 Jan 20;25(2):538-46.

Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2).

Author information

Division of Oncology, Children's Hospital of Philadelphia, Pennsylvania 19104, USA.


There is increasing evidence that neutrophins and their receptors play an important role in regulating development of both the central and the peripheral nervous systems. Human TRK-A (NTRK1) and TRK-C (NTRK3) have been cloned and sequenced, but only a truncated form of human TRK-B has been published. Therefore, we isolated complementary DNAs spanning the entire coding region of both human full-length and truncated forms of TRK-B from human brain cDNA libraries. Human full-length TRK-B codes for a protein of 822 amino acid residues. The putative mature peptide sequence is 49% homologous to human TRK-A and 55% to full-length human TRK-C, with 40% amino acid identify among TRK-A, -B, and -C. Nine of 13 cysteine residues, 4 of 12N-glycosylation sites in the extracellular domain, and 10 of 13 tyrosine residues in the intracellular domain are conserved among human TRK-A, -B, and -C. There is a cluster of 10 serine residues in the juxtamembrane region of TRK-B that is absent in TRK-A. Two major sizes of TRK-B transcripts were expressed in human brain. Northern blot analysis using probes specific for the extracellular or the tyrosine kinase domain revealed that the 9.5-kb band encodes the full-length TRK-B mRNA and the 8.0-kb band encodes the truncated form of TRK-B mRNA. By fluorescence in situ hybridization and somatic cell hybrid mapping, the human TRK-B gene was localized to chromosome 9q22.1.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center