Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1995 Apr;68(4 Suppl):194S-199S; discussion 199S-201S.

The role of three-state docking of myosin S1 with actin in force generation.

Author information

  • 1Max Planck Institute for Molecular Physiology, Dortmund, Germany.


It has been shown that in solution myosin subfragment 1 binds to actin in three principal steps: [formula: see text] The nucleotide bound to myosin has a major influence on the equilibrium constant of the third of these steps but little effect on the other two. The third step is thought to be coupled to the force-generating event. Three-step binding and structure: The formation of the collision complex is strongly ionic strength dependent but independent of temperature. The isomerization to the A state is not strongly dependent on ionic strength but is affected by organic solvent and temperature. In contrast the isomerization to the R state-is affected by both ionic strength and organic solvent but little affected by temperature. The recent docking of the three-dimensional structures of actin and S1 suggest possible structural correlates of these events. These studies lead to predictions for the docking process, which may be tested using site-directed mutagenesis or peptide inhibitors. Three-step binding and head-head interactions: Studies of HMM binding to actin compared with S1 binding show that binding of two heads in the A state are unlikely presumably because of strain effects. However, binding of two heads as one A and one R state shows little evidence of strain while the isomerization of the second head to give two R states is fivefold weaker than for an isolated S1 head. These results suggest that in a rapidly shortening muscle only one head is likely to be attached at a time. Under isometric conditions, although it is possible for both heads to bind to adjacent actins, it is unlikely that both will be in the force holding R state simultaneously. Three-step binding and regulation by tropomyosin-troponin:Our recent solution studies have established that the thin filament can exist in three calcium-dependent states which we termed blocked, closed and open. A blocked state cannot form the A state with S1 and a closed state cannot form the force holding R state nor accelerate product release from S1. Thus control operates at two distinct points in the docking process. The docking process itself is coupled to hydrolysis of ATP (the A-to-R isomerization is inhibited by the presence of the gamma Pi on ATP), and therefore all of these events are interrelated.The coming together of these different strands provides a biochemical framework that should allow the dynamic properties of the crossbridge in muscle to be understood.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center