Send to

Choose Destination
See comment in PubMed Commons below
Invest Ophthalmol Vis Sci. 1995 Jun;36(7):1240-6.

Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker.

Author information

Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA.



To study the response of the macular circulation to a local increase in metabolic demand created by a flickering source of illumination.


Laser-targeted angiography (release of a fluorescent dye from heat-sensitive liposomes using a laser pulse) was used to study, in subhuman primates, changes in hemodynamic parameters of the retinal circulation that were induced by a flickering source of illumination. Changes in the macular macrocirculation were compared with those in the macular microcirculation and were evaluated at various distances from the foveola.


In response to monochromatic light flicker, the blood flow in retinal arteries increased by 30%. The response of the microcirculation was not homogeneous. It showed a maximum increase in the mid-perifoveal region where there is an increase in ganglion cells and nerve fibers. Interestingly, the maximum change in the index representing capillary blood flow exceeded the blood flow change in the artery (P < 0.08).


A stimulus expected to cause increased metabolic demand results in a regulatory response by the retinal microcirculation. This response shows spatial variations that correspond with known variations in retinal anatomy. The authors propose that a redistribution of blood can occur between the capillary layers to fulfill high metabolic demands by neuronal tissue remote from the choroid.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center