Send to

Choose Destination
Fed Proc. 1976 Jul;35(9):2031-6.

Structural evolution of bacterial plasmids: role of translocating genetic elements and DNA sequence insertions.


Recent evidence suggests that plasmids have evolved by site-specific recombinational events involving translocation and insertion of discretely defined DNA segments. The role of translocating genetic elements and repeated DNA sequences in the formation and structural evolution of bacterial plasmids, and in the control of plasmid gene expression, is the subject of this brief review. Insertion sequence (IS) regions are discrete segments of DNA that are known to cause strongly polar mutations in the genes of Escherichia coli and several bacteriophages as a consequence of their insertion into bacterial or phage genomes. Recent investigations have identified three separate kinds of IS segments on plasmids, and have indicated that such regions may have a role in 1) site-specific reversible dissociation of antibiotic resistance plasmids into their component segments, 2) recombination of certain plasmids with the bacterial chromosome, and 3) translocation of segments of plasmid DNA onto other replicons, or onto different sites of the same replicon. In addition, such DNA sequences, which may be repeated on plasmid genomes in either direct or reverse orientation, are involved in the control of plasmid gene expression. Inverted repeats other than the genetically characterized IS segments also appear to be involved in recA-independent, recombination and translocation of plasmid DNA segments. These inverted repeats contain palindromic nucleotide sequences on each strand of DNA and are detectable as hairpin-loop structures by electron microscope heteroduplex analysis. Such palindromes resemble the recognition sites for restriction endonucleases, some of which are encoded by plasmids, suggesting that similar endonucleolytic enzymes may be involved in the translocation of plasmid DNA segments.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center