Send to

Choose Destination
Planta. 1994;194(2):230-40.

Functional analysis of a leucine aminopeptidase from Solanum tuberosum L.

Author information

Institut für Genbiologische Forschung GmbH, Berlin, Germany.


A protein encoded by a potato cDNA homologous to a leucine aminopeptidase (LAP) from bovine lens (Hildmann et al. 1992) was expressed in Escherichia coli cells and biochemically characterized by hydrolysis of leucine p-nitroanilide. Activity was highest under alkaline conditions with an optimum at about pH 10. Maximal activities were measured at 65 degrees C. Apart from leucine p-nitroanilide the enzyme could also efficiently hydrolyze the p-nitroanilides of arginine and methionine. Complete inhibition of the enzyme was achieved by incubating bacterial extracts with bestatin and EDTA, which classifies the enzyme as a metalloprotease belonging to the same group as the homohexameric LAPs from mammals. Protein blots showed low constitutive expression of the LAP in all organs of potato plants: buds, flowers, tubers, roots and leaves. An increase in steady-state protein that was paralleled by an increase in total LAP activity was observed in leaf extracts after supplying jasmonic acid via the petioles. Plants containing the cDNA in antisense orientation behind the constitutive Cauliflower Mosaic Virus 35S promoter showed nearly complete reduction of the corresponding mRNA in leaves. However, in these plants LAP activities were only decreased by about 20% as compared to non-transgenic potato plants, while after feeding with jasmonic acid the activity of transgenic plants was reduced to about 5% of that of non-transgenic plants also induced by jasmonic acid. There was no phenotypic difference between wild-type and LAP antisense plants.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center