Format

Send to

Choose Destination
Vision Res. 1995 Apr;35(7):915-24.

Measuring the spatial frequency selectivity of second-order texture mechanisms.

Author information

1
Department of Psychology, Loyola University, Chicago, IL 60626, USA.

Abstract

Recent investigations of texture and motion perception suggest two early filtering stages: an initial stage of selective linear filtering followed by rectification and a second stage of linear filtering. Here we demonstrate that there are differently scaled second-stage filters, and we measure their contrast modulation sensitivity as a function of spatial frequency. Our stimuli are Gabor modulations of a suprathreshold, bandlimited, isotropic carrier noise. The subjects' task is to discriminate between two possible orientations of the Gabor. Carrier noises are filtered into four octave-wide bands, centered at m = 2, 4, 8, and 16 c/deg. The Gabor test signals are w = 0.5, 1, 2, 4 and 8 c/deg. The threshold modulation of the test signal is measured for all 20 combinations of m and w. For each carrier frequency m, the Gabor test frequency w to which subjects are maximally sensitive appears to be approximately 3-4 octaves below m. The consistent m x w interaction suggests that each second-stage spatial filter may be differentially tuned to a particular first-stage spatial frequency. The most sensitive combination is a second-stage filter of 1 c/deg with first-stage inputs of 8-16 c/deg. We conclude that second-order texture perception appears to utilize multiple channels tuned to spatial frequency and orientation, with channels tuned to low modulation frequencies appearing to be best served by carrier frequencies 8 to 16 times higher than the modulations they are tuned to detect.

PMID:
7762149
DOI:
10.1016/0042-6989(94)00196-s
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center