Send to

Choose Destination
Appl Environ Microbiol. 1995 Apr;61(4):1614-9.

Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product.

Author information

Chemunex S. A., Maisons-Alfort, France.


Flow cytometry is a rapid and sensitive method which may be used for the detection of microorganisms in foods and drinks. A key requirement for this method is a sufficient fluorescence staining of the target cells. The mechanism of staining of the yeast Saccharomyces cerevisiae by fluorescein diacetate (FDA) and 5- (and 6-)carboxyfluorescein diacetate (cFDA) was studied in detail. The uptake rate of the prefluorochromes increased in direct proportion to the concentration and was not saturable, which suggests that transport occurs via a passive diffusion process. The permeability coefficient for cFDA was 1.3 x 10(-8) m s-1. Once inside the cell, the esters were hydrolyzed by intracellular esterases and their fluorescent products accumulated. FDA hydrolysis (at 40 degrees C) in cell extracts could be described by first-order reaction kinetics, and a rate constant (K) of 0.33 s-1 was calculated. Hydrolysis of cFDA (at 40 degrees C) in cell extracts was described by Michaelis-Menten kinetics with an apparent Vmax and Km of 12.3 of protein-1 and 0.29 mM, respectively. Accumulation of fluorescein was most likely limited by the esterase activity, since transport of FDA was faster than the hydrolysis rate. In contrast, accumulation of carboxyfluorescein was limited by the much slower transport of cFDA through the cell envelope. A simple mathematical model was developed to describe the fluorescence staining. The implications for optimal staining of yeast cells with FDA and cFDA are discussed.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center