Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1995 Apr;268(4 Pt 2):H1749-56.

Effect of intracellular and extracellular acidosis on sodium current in ventricular myocytes.

Author information

1
Department of Medicine, University of Maryland, Baltimore 21201, USA.

Abstract

Conduction slowing is an essential element in the generation of ischemic ventricular arrhythmias and is determined in part by the inward Na+ current (INa). Because intracellular acidosis is an early consequence of ischemia, we hypothesized that lowering intracellular pH (pHi) would reduce or kinetically modulate INa and thus affect cardiac conduction. To test this hypothesis, the whole cell patch-clamp method was used to measure INa in neonatal rat ventricular myocytes exposed to varying extracellular pH (pHo 6.4-7.4), while perfusing the cells with acidic solutions (pHi 6.2-7.2). With simultaneous acidification of pHo and pHi there was a progressive increase in time to peak current, a 31% decrease in peak INa (298 +/- 18 to 206 +/- 16 pA/pF), and a complex slowing of inactivation kinetics. At the most extreme levels of acidification, there was a 5-mV hyperpolarizing shift in steady-state inactivation and a 6-mV depolarizing shift in activation. Independent changes of pHo and pHi indicate that the reduction of peak INa is a function of pHo. However, steady-state inactivation is modulated by pHi. The time course of activation and inactivation appears to depend on both pHo and pHi. We conclude that both intracellular and extracellular acidosis are significant but distinct modulators of INa amplitude and kinetics in cardiac myocytes.

PMID:
7733379
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center