Send to

Choose Destination
Biochemistry. 1994 Sep 20;33(37):11278-85.

Insulin-like compounds related to the amphioxus insulin-like peptide.

Author information

Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, New York 10029, USA.


Three insulin-like compounds consisting of two disulfide-linked polypeptide chains have been synthesized. The A-chains of these compounds correspond either to the A- or to the A + D-domain of the putative amphioxus insulin-like peptide (amphioxus ILP), and their B-chains correspond either to the B-chain of insulin or to a slightly modified (i.e., [1-Thr]) B-domain of amphioxus ILP. The biological potency of these compounds was evaluated in mammalian cells or cell fractions containing either human or rat insulin receptors or human or mouse insulin-like growth factor I (IGF-I) receptors, with respect to binding affinity, insulin-like metabolic activity (lipogenesis), and growth factor activity (mitogenesis). Amphioxus ILP A/bovine insulin B and amphioxus ILP A + D/bovine insulin B exhibited potencies ranging from 2.0 to 9.8% relative to natural insulin, and both compounds were full agonists in lipogenesis assays, stimulating lipogenesis to the same maximal extent as seen with natural insulin. Amphioxus ILP A/amphioxus ILP [1-Thr]B stimulated lipogenesis with a potency of 0.01% relative to natural insulin. We consider this compound also likely to be a full agonist. In assays measuring binding to IGF-I receptors and stimulation of mitogenesis, these compounds displayed some activity although the activity was too low for exact quantification. These results suggest that amphioxus ILP has retained an overall structural similarity to mammalian insulin and IGF-I but has also accumulated substantial mutations which markedly reduce its ability to bind and activate their cognate receptors.(ABSTRACT TRUNCATED AT 250 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center