Format

Send to

Choose Destination
See comment in PubMed Commons below
Med Phys. 1995 Jan;22(1):37-53.

The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization.

Author information

1
Department of Radiation Medicine, Paul Scherrer Institute, Villigen PSI, Switzerland.

Abstract

The new proton therapy facility is being assembled at the Paul Scherrer Institute (PSI). The beam delivered by the PSI sector cyclotron can be split and brought into a new hall where it is degraded from 590 MeV down to an energy in the range of 85-270 MeV. A new beam line following the degrader is used to clean the low-energetic beam in phase space and momentum band. The analyzed beam is then injected into a compact isocentric gantry, where it is applied to the patient using a new dynamic treatment modality, the so-called spot-scanning technique. This technique will permit full three-dimensional conformation of the dose to the target volume to be realized in a routine way without the need for individualized patient hardware like collimators and compensators. By combining the scanning of the focused pencil beam within the beam optics of the gantry and by mounting the patient table eccentrically on the gantry, the diameter of the rotating structure has been reduced to only 4 m. In the article the degrees of freedom available on the gantry to apply the beam to the patient (with two rotations for head treatments) are also discussed. The devices for the positioning of the patient on the gantry (x rays and proton radiography) and outside the treatment room (the patient transporter system and the modified mechanics of the computer tomograph unit) are briefly presented. The status of the facility and first experimental results are introduced for later reference.

PMID:
7715569
DOI:
10.1118/1.597522
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center