Send to

Choose Destination
Brain Res. 1994 Dec 30;668(1-2):194-203.

(+)MK-801 prevents the DDC-induced enhancement of MPTP toxicity in mice.

Author information

Institute of Pharmacology, School of Medicine, University of Pisa, Italy.


In order to reach deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, MK-801, a non-competitive antagonist of NMDA receptors, has been used as a tool to study the role of excitatory amino acids. In agreement with previous reports, (+)MK-801 did not significantly affect either striatal dopamine (DA) or tyrosine-hydroxylase (TH) activity in MPTP-treated animals. On the contrary (+)MK-801, but not (-)MK-801 significantly reduced the DDC + MPTP-induced fall in striatal DA and TH activity. A similar preventing effect on DA metabolites (DOPAC and HVA) and HVA/DA ratio was observed. The number of TH+ neurons in the substantia nigra (SN) of (+)MK-801-pretreated mice was not significantly different from that of control animals, indicating that this treatment specifically antagonized the extensive DDC-induced lesion of dopaminergic cell bodies in this brain area. (+)MK-801 treatment did not affect the DDC-induced changes of striatal MPP+ levels, suggesting that the observed antagonism of MK-801 against DDC is not due to MPP+ kinetic modifications. Pretreatment with the MAO-B inhibitor, L-deprenyl, or with the DA uptake blocker, GBR 12909, completely prevented the marked DA depletion elicited by DDC + MPTP within the striatum. Both treatments also protected from the fall in DA metabolites and TH activity as well. This indicates that DDC-induced potentiation is dependent upon MPP+ production and its uptake by the dopaminergic nerve terminals. All these findings suggest that NMDA receptors play a crucial role in the DDC-induced enhancement of MPTP toxicity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center