Send to

Choose Destination
Dev Dyn. 1995 Jan;202(1):67-79.

Studies on insulin-like growth factor-I and insulin in chick limb morphogenesis.

Author information

Department of Anatomy, University of Connecticut Health Center, Farmington 06030.


The apical ectodermal ridge (AER) promotes the proliferation and directed outgrowth of the subridge mesodermal cells of the developing limb bud, while suppressing their differentiation. Insulin-like growth factor-I (IGF-I) and its receptor are expressed by the subridge mesodermal cells of the chick limb bud growing out in response to the AER, and specific insulin receptors are present in the limb bud during its outgrowth. To study the possible roles of IGF-I and insulin in limb outgrowth, we have examined their effects on the morphogenesis of posterior and anterior portions of the distal tip of stage 25 embryonic chick wing buds subjected to organ culture in serum-free medium in the presence or absence of the AER and limb ectoderm. The distal mesoderm of control posterior explants lacking an AER or all limb ectoderm ceases expressing IGF-I mRNA, exhibits little or no proliferation, fails to undergo outgrowth, and rapidly differentiates. Exogenous IGF-I and insulin promote the outgrowth and proliferation and suppress the differentiation of distal mesodermal cells in posterior explants lacking an AER or limb ectoderm, thus mimicking at least to some extent the outgrowth promoting and anti-differentiative effects normally elicited on the subridge mesoderm by the AER. Furthermore, IGF-I and insulin-treated posterior explants exhibit high IGF-I mRNA expression, indicating that IGF-I and insulin maintain the expression of endogenous IGF-I by the subridge mesoderm. We have also found IGF-I and insulin can affect the morphology and activity of the AER. When the posterior portion of the wing bud tip is cultured with the AER intact in control medium, on day 4-5 the AER flattens, ceases expressing high amounts of the AER-characteristic homeobox-containing gene Msx2, and concomitantly an elongated cartilaginous element differentiates in the subridge mesoderm. In contrast, in the presence of exogenous IGF-I or insulin the AER of such explants does not flatten, continues expressing high amounts of Msx2, and the subridge mesoderm remains undifferentiated and proliferative. Thus, exogenous IGF-I and insulin maintain the thickness of the AER and sustain its expression of Msx2, while sustaining the anti-differentiative effect normally elicited on the subridge mesoderm by a thickened functional AER. Notably, we have also found that exogenous IGF-I and insulin induce the formation of a thickened ridge-like structure that expresses high amounts of Msx2 from the normally thin distal anterior ectoderm of the limb bud, while promoting dramatic outgrowth and proliferation of the anterior mesoderm, which normally undergoes little outgrowth or proliferation.(ABSTRACT TRUNCATED AT 400 WORDS).

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center