Format

Send to

Choose Destination
Biophys J. 1993 Jul;65(1):414-22.

A quantitative study of electroporation showing a plateau in net molecular transport.

Author information

1
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139.

Abstract

Electroporation is believed to involve a temporary structural rearrangement of lipid bilayer membranes, which results in ion and molecular transport across the membrane. The results of a quantitative study of molecular transport due to electroporation caused by a single exponential pulse are presented; transport of four molecules of different physical characteristics across erythrocyte ghost membranes is examined as a function of applied field strength. Flow cytometry is used to quantitatively measure the number of molecules transported for 10(4) to 10(5) individual ghosts for each condition. This study has four major findings: 1) Net transport first increases with field strength, but reaches a plateau at higher field strengths. Significant transport is found at or below 1 kV/cm, and transport plateaus begin at field strengths between 2 and 5 kV/cm depending on the molecule transported. 2) A single population of ghosts generally exists, but exhibits a wide distribution in the amount of molecular transport. 3) Under the conditions used, the direction of transport across the ghost membrane does not appear to affect molecular transport significantly. 4) Large numbers of ghosts may be destroyed by the electroporation procedure.

PMID:
7690262
PMCID:
PMC1225736
DOI:
10.1016/S0006-3495(93)81081-6
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center