Send to

Choose Destination
Mutat Res. 1993 Aug;294(2):127-38.

N-ethyl-N-nitrosourea-induced mutagenesis in Escherichia coli: multiple roles for UmuC protein.

Author information

Department of Microbiology, Southern Illinois University, Carbondale 62901.


Backmutations of an ochre (UAA) nonsense defect in the tyrA gene of Escherichia coli were induced by N-ethyl-N-nitrosourea (ENU) in both UmuC+ and UmuC- strains. This site is particularly flexible to base substitution mutation and all but one (TAA-->TGA) substitution can be recovered using a reversion assay. Employing direct sequencing of polymerase chain reaction-amplified genomic DNA and/or colony-hybridization methods, the changes induced by several separate doses of ENU in a total of 587 independent backmutations were investigated. In the UmuC+ strain, all possible single-base substitutions were recovered. Different frequencies for individual single-base substitutions were obtained and correlations with the surrounding base sequence could be seen. Transitions occurred most frequently at thymine residues having a purine on the 5'-side while transversions occurred more frequently at thymine residues having a cytosine on the 5'-side. In the UmuC- strain, ENU failed to induce A:T-->T:A and A:T-->C:G transversions and the frequency of A:T-->G:C transitions was reduced. However, an unidentified class of extragenic mutations were induced to a greater extent. These results suggest distinct pathways for ENU-induced mutagenesis at ethylated thymine residues and delineate several separate functions for the UmuC protein.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center