Format

Send to

Choose Destination
Nature. 1993 Mar 11;362(6416):160-4.

Mutations in CFTR associated with mild-disease-form Cl- channels with altered pore properties.

Author information

1
Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is a phosphorylation-regulated Cl- channel located in the apical membrane of epithelia. Although cystic fibrosis (CF) is caused by mutations in a single gene encoding CFTR, the disease has a variable clinical phenotype. The most common mutation associated with cystic fibrosis, deletion of a phenylalanine at position 508 (frequency, 67%), is associated with severe disease. But some missense mutations, for example ones in which arginine is replaced by histidine at residue at 117 (R117H; 0.8%), tryptophan at 334 (0.4%), or proline at 347 (0.5%), are associated with milder disease. These missense mutations affect basic residues located at the external end of the second (M2) and in the sixth (M6) putative membrane-spanning sequences. Here we report that, when expressed in heterologous epithelial cells, all three mutants were correctly processed and generated cyclic AMP-regulated apical Cl- currents. Although the macroscopic current properties were normal, the amount of current was reduced. Patch-clamp analysis revealed that all three mutants had reduced single-channel conductances. In addition, R117H showed altered sensitivity to external pH and had altered single-channel kinetics. These results explain the quantitative decrease in macroscopic Cl- current, and suggest that R117, R334 and R347 contribute to the pore of the CFTR Cl- channel. Our results also suggest why R117H, R334W and R347P produce less severe clinical disease and have implications for our understanding of cystic fibrosis.

PMID:
7680769
DOI:
10.1038/362160a0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center