Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1995 Sep 22;270(38):22109-12.

Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen.

Author information

1
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

The 5'-->3'-exonuclease domain of Escherichia coli DNA polymerase I is required for the completion of lagging strand DNA synthesis, and yet this domain is not present in any of the eukaryotic DNA polymerases. Recently, the gene encoding the functional and evolutionary equivalent of this 5'-->3'-exonuclease domain has been identified. It is called FEN-1 in mouse and human cells and RTH1 in Saccharomyces cerevisiae. This 42-kDa enzyme is required for Okazaki fragment processing. Here we report that FEN-1 physically interacts with proliferating cell nuclear antigen (PCNA), the processivity factor for DNA polymerases delta and epsilon. Through protein-protein interactions, PCNA focuses FEN-1 on branched DNA substrates (flap structures) and on nicked DNA substrates, thereby stimulating its activity 10-50-fold but only if PCNA can functionally assemble as a toroidal trimer around the DNA. This interaction is important in the physical orchestration of lagging strand synthesis and may have implications for how PCNA stimulates other members of the FEN-1 nuclease family in a broad range of DNA metabolic transactions.

PMID:
7673186
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center