Send to

Choose Destination
Neuroreport. 1995 May 30;6(8):1097-100.

Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation.

Author information

Laboratory of Pharmacology, Gulbenkian Institute of Science, Hospital de Santa Maria, Lisboa, Portugal.


The effect of the stable adenosine analogue, 2-chloro-adenosine (CADO), on the currents elicited by iontophoretic application of N-methyl-D-aspartate (NMDA) to pyramidal cells acutely dissociated from the CA1 area of the rat hippocampus was studied using the patch-clamp technique in the whole-cell configuration. CADO (3-300 nM) reversibly inhibited NMDA receptor-mediated currents (maximal effect: 54.2 +/- 6.6% decrease, EC50 = 10.3 nM). This effect was prevented by the adenosine A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (50 nM). CADO (100 nM inhibited the conductance induced by iontophoretic application of NMDA, without changing its reversal potential, in both the absence and the presence of Mg2+ (30 microM). Adenosine may contribute to the regulation of the NMDA receptor function, particularly under conditions, like hypoxia and ischaemia, leading to excessive NMDA receptor activation.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center