Send to

Choose Destination
Perspect Biol Med. 1995 Summer;38(4):605-23.

The immune self: a selectionist theory of recognition, learning, and remembering within the immune system.

Author information

Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, 02114, USA.


In this paper, I have briefly explored metaphors shared by the immune and nervous systems and shown that this exercise can lead to the elucidation of common principles of organization, as well as to predictions concerning how the immune system functions. Metaphor itself undoubtedly reflects the way in which we categorize and retrieve information 44], so it is not surprising that the deep processes of language tend to sample information from related data categories. Although the nervous and immune systems are obviously not the same and metaphors are indeed just that, my primary goal has been to suggest that by virtue of their having evolved in parallel over millions of years, the nervous and immune systems currently use the same archetypal principles and strategies to address related challenges in information processing and retrieval. Ultimately, nature is conservative. One need only look at a tree, a river, the airways, or the vascular bed in order to see how a fractal pattern of repetitive dichotomous branching has been used by each, in order to optimize the transport of fluids over large distances [45]. While each system has had to adopt different materials in order to solve the problem, the shape of their solutions is remarkably alike. In the immune and nervous systems, the elements used to produce optimal functional responses are also quite different, but again the solutions have been achieved by comparable strategies. I am certain that these two great systems of information processing, each responding with vastly different kinetics, will prove to be far more integrally interdependent than has been previously recognized. For example, should a swift response by the immune system be required in an overwhelming invasion by microbial pathogens, the immune system may be able to cooperate with the rapidly reacting nervous system to rid the host of the invaders. In this regard, we have shown that the beta-adrenergic hormone epinephrine rapidly increases the traffic of memory T-cells to mucosal sites, presumably representing an immune component of the fight-or-flight response [46]. Neural evolution appears to have as its goal the development of more efficient information processing systems that lead to higher levels of consciousness. However, in modern times, technologic advances in information processing have rapidly outstripped the slower adaptations that can be made by evolution. In order to satisfy his compulsive quest for information, man has recently developed and recruited the aid of computers.(ABSTRACT TRUNCATED AT 400 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center