Send to

Choose Destination
Mol Gen Genet. 1976 Jan 16;143(2):119-29.

The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control.


With the use of neutral sucrose sedimentation techniques, the size of unirradiated nuclear DNA and the repair of double-strand breaks induced in it by ionizing radiation have been determined in both wild-type and homozygous rad52 diploids of the yeast Saccharomyces cerevisiae. The number average molecular weight of unirradiated DNA in these experiments is 3.0 X 10(8)+/-0.3 Daltons. Double-strand breaks are induced with a frequency of 0.58 X 10(-10) per Daltonkrad in the range of 25 to 100 krad. Since repair at low doses is observed in wild-type but not homozygous rad52 strains, the corresponding rad52 gene product is concluded to have a role in the repair process. Cycloheximide was also observed to inhibit repair to a limited extent indicating a requirement for protein synthesis. Based on the sensitivity of various mutants and the induction frequency of double-strand breaks, it is concluded that there are 1 to 2 double-strand breaks per lethal event in diploid cells incapable of repairing these breaks.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center