Send to

Choose Destination
Endocrinology. 1995 Sep;136(9):4044-8.

Autofeedback suppression of growth hormone (GH) secretion in transgenic mice expressing a human GH reporter targeted by tyrosine hydroxylase 5'-flanking sequences to the hypothalamus.

Author information

Department of Medicine, University of Illinois at Chicago 60612, USA.


Transgenic mice expressing a tyrosine hydroxylase-human (h) GH fusion gene in the hypothalamus exhibit a dwarf phenotype. The GH feedback mechanism(s) underlying the growth retardation in these animals was investigated by assessing peptide and messenger RNA (mRNA) levels of the hormones of the hypothalamic-GH-IGF-I axis. Pituitary GH content, hypothalamic GH-releasing hormone (GHRH) and somatostatin (SRIH) content, and serum IGF-I levels were measured by RIA. mRNA levels of hypothalamic GHRH and SRIH and of pituitary GH and the GHRH receptor were measured by Northern blot hybridization. Transgenic mice of both sexes and their wild-type littermates were studied at 2-4 months of age. The pituitary GH content was markedly reduced by 85% in male and by 87% in female transgenic mice compared to that in wild-type controls (P < 0.01 for both). The pituitary GH mRNA content was also decreased by 73% (P = 0.002) in transgenic male mice. Circulating IGF-I levels were significantly reduced by 66% and 68% in male and female transgenic mice, respectively (P = 0.001). The hypothalamic GHRH content was significantly reduced by 19% and 33% (P < 0.05) in male and female transgenic mice, respectively. No significant difference was detected, however, in the hypothalamic SRIH content between wild-type and transgenic mice. Hypothalamic GHRH mRNA levels were significantly decreased by 35% (P = 0.002) in transgenic male mice compared to those in wild-type littermates. In contrast, SRIH mRNA was not significantly changed. An even greater reduction (61%; P = 0.003) was observed in pituitary GHRH receptor mRNA in transgenic mice. These data indicate that the GH deficiency and dwarf phenotype of the tyrosine hydroxylase-hGH transgenic mouse can be attributed primarily to impaired hypothalamic GHRH production. The mechanism of GH feedback inhibition appears to involve direct suppression of GHRH gene expression by locally produced hGH in the hypothalamus.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center