Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7292-6.

Ultrafast thermally induced unfolding of RNase A.

Author information

Department of Chemistry, University of Pennsylvania, Philadelphia 19104, USA.


A temperature jump (T-jump) method capable of initiating thermally induced processes on the picosecond time scale in aqueous solutions is introduced. Protein solutions are heated by energy from a laser pulse that is absorbed by homogeneously dispersed molecules of the dye crystal violet. These act as transducers by releasing the energy as heat to cause a T-jump of up to 10 K with a time resolution of 70 ps. The method was applied to the unfolding of RNase A. At pH 5.7 and 59 degrees C, a T-jump of 3-6 K induced unfolding which was detected by picosecond transient infrared spectroscopy of the amide I region between 1600 and 1700 cm-1. The difference spectral profile at 3.5 ns closely resembled that found for the equilibrium (native-unfolded) states. The signal at 1633 cm-1, corresponding to the beta-sheet structure, achieved 15 +/- 2% of the decrease found at equilibrium, within 5.5 ns. However, no decrease in absorbance was detected until 1 ns after the T-ump. The disruption of beta-sheet therefore appears to be subject to a delay of approximately 1 ns. Prior to 1 ns after the T-jump, water might be accessing the intact hydrophobic regions.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center