Send to

Choose Destination
J Clin Invest. 1995 Aug;96(2):1159-63.

Neurovascular dysfunction in diabetic rats. Potential contribution of autoxidation and free radicals examined using transition metal chelating agents.

Author information

Department of Biomedical Sciences, University of Aberdeen, Scotland, United Kingdom.


Oxygen free radical activity is elevated in diabetes mellitus and has been implicated in the etiology of vascular complications. Recent studies have shown that impaired perfusion of nerve endoneurium is a major cause of nerve fiber dysfunction in experimental diabetes. Free radical scavenger treatment prevents the development of nerve conduction abnormalities in diabetic rats. In vitro experiments suggest that autoxidation reactions of glucose, catalyzed by free transition metal ions, are a potential source of free radicals in diabetes. We investigated whether chronic treatment with deferoxamine and trientine, transition metal chelating agents which can prevent autoxidation, could correct nerve conduction and blood flow changes in streptozotocin-diabetic rats. A 20% reduction in sciatic nerve motor conduction velocity after 2 mo diabetes was 90% ameliorated by 2 wk of treatment with deferoxamine or trientine. Sciatic endoneurial nutritive blood flow was 45% reduced by diabetes, but was completely corrected by treatment. In contrast, transition metal chelation had no effect on blood flow or conduction velocity in nondiabetic rats. Thus, the data support the hypothesis that increased free radical activity by glucose autoxidation as a result of impaired transition metal handling is a major cause of early neurovascular deficits in diabetes.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center