Send to

Choose Destination
Oncogene. 1995 Aug 3;11(3):493-504.

p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells.

Author information

Department of Medicine, University of Maryland Cancer Center, Baltimore, USA.


The biological activity of a novel synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN) was investigated in human breast carcinoma (HBC) cells. Although capable of selective binding to the RAR gamma nuclear receptor, AHPN inhibited the growth of a number of HBC cell lines via RAR- or RXR-independent pathways. AHPN also inhibited the growth of the human leukemia cell line HL-60R which does not possess functional RARs. RA significantly inhibited AP-1 mediated gene activation in MCF-7 cells while AHPN displayed no such anti-AP-1 activity. Retinoids normally are cytostatic in their inhibition of breast carcinoma growth and permit cell proliferation upon their removal, wher as AHPN induced G0/G1 arrest within 6h followed by apoptosis. In MCF-7 cells that harbor wild type p53, AHPN-induced G0/G1 arrest and apoptosis was accompanied by p53-independent regulation of WAF1/CIP1 as well as bax mRNA levels while bcl-2 mRNA levels were decreased. In MDA-MB-231 cells which possess a mutant p53, AHPN-mediated G0/G1 arrest and apoptosis was also associated with a concomitant up regulation of WAF1/CIP1 mRNA while these cells did not express bax or bcl-2 messages. Thus AHPN represents a novel retinoid that induces G0/G1 arrest and apoptosis via a unique pathway which appears to involve activation of known downstream effectors of p53 in a p53-independent manner.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center