Send to

Choose Destination
See comment in PubMed Commons below
Science. 1995 Jul 21;269(5222):364-70.

Structurally complex and highly active RNA ligases derived from random RNA sequences.

Author information

Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
MA Gen Hosp, Boston


Seven families of RNA ligases, previously isolated from random RNA sequences, fall into three classes on the basis of secondary structure and regiospecificity of ligation. Two of the three classes of ribozymes have been engineered to act as true enzymes, catalyzing the multiple-turnover transformation of substrates into products. The most complex of these ribozymes has a minimal catalytic domain of 93 nucleotides. An optimized version of this ribozyme has a kcat exceeding one per second, a value far greater than that of most natural RNA catalysts and approaching that of comparable protein enzymes. The fact that such a large and complex ligase emerged from a very limited sampling of sequence space implies the existence of a large number of distinct RNA structures of equivalent complexity and activity.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center