Send to

Choose Destination
Mol Gen Genet. 1995 Jun 25;247(6):709-15.

Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane.

Author information

Division of Tropical Crops and Pastures, CSIRO, Cunningham Laboratory, Australia.


Resistance to selenate and chromate, toxic analogues of sulphate, was used to isolate a mutant of Saccharomyces cerevisiae deficient in the capacity to transport sulphate into the cells. A clone which complements this mutation was isolated from a cDNA library prepared from S. cerevisiae poly(A)+ RNA. This clone contains an insert which is 2775 bp in length and has a single open reading frame that encodes a 859 amino acid polypeptide with a molecular mass of 96 kDa. Sequence motifs within the deduced amino acid sequence of this cDNA (SUL1) show homology with conserved areas of sulphate transport proteins from other organisms. Sequence analysis predicts the position of 12 putative membrane spanning domains in SUL1. When the cDNA for SUL1 was expressed in S. cerevisiae, a high affinity sulphate uptake activity (Km = 7.5 +/- 0.6 microM for SO2-4) was observed. A genomic mutant of S. cerevisiae in which 1096 bp were deleted from the SUL1 coding region was constructed. This mutant was unable to grow on media containing less than 5 mM sulphate unless complemented with a plasmid containing the SUL1 cDNA. We conclude that the SUL1 cDNA encodes a S. cerevisiae high affinity sulphate transporter that is responsible for the transfer of sulphate across the plasma membrane from the external medium.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center