Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1995 Jul 21;270(29):17098-105.

Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts.

Author information

1
Wistar Institute, Philadelphia, Pennsylvania 19104, USA.

Abstract

Mutagenic analysis of the substrate binding and catalytic domains of double-stranded RNA (dsRNA) adenosine deaminase (DRADA) was carried out. This nuclear enzyme is likely to be involved in the RNA editing of glutamate-gated ion channels that are essential for fast excitatory neurotransmission in mammalian brain. The deletion of the first or the third of the three dsRNA binding motifs within the substrate binding domain dramatically decreases enzyme activity, whereas the second motif seems to be dispensable. The results indicate that the three motifs are not functionally equivalent in the catalytic action of DRADA. Mutation of the putative zinc-coordinating residues, His910, Cys966, and Cys1036, abolished the DRADA activity. Similarly, the Glu912 residue, predicted to be involved in the proton transfer functions of the enzyme, was found to be indispensable. Our results reinforce the previous proposal that the hydrolytic deamination mechanism of DRADA may be more similar to that of the cytidine deaminases than of adenosine deaminases.

PMID:
7615504
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center