Format

Send to

Choose Destination
See comment in PubMed Commons below
Pflugers Arch. 1995 Apr;429(6):809-19.

Physiological and molecular characterization of an IRK-type inward rectifier K+ channel in a tumour mast cell line.

Author information

1
Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.

Abstract

The basophilic leucaemia cell line RBL-2H3 exhibits a robust inwardly rectifying potassium current, IKIR, which is likely to be modulated by G proteins. We examined the physiological and molecular properties of this KIR conductance to define the nature of the underlying channel species. The macroscopic conductance revealed characteristics typical of classical K+ inward rectifiers of the IRK type. Channel gating was rapid, first order (tau approximately 1 ms at -100 mV) and steeply voltage dependent. Both activation potential and slope conductance were dependent on extracellular K+ concentration ([K+]o) and inward rectification persisted in the absence of internal Mg2+. The current was susceptible to a concentration- and voltage-dependent block by extracellular Na+, Cs+ and Ba2+. Initial IKIR whole-cell amplitudes as well as current rundown were dependent on the presence of 1 mM internal ATP. Perfusion of intracellular guanosine 5'-Q-(3-thiotriphosphate) (GTP[gamma S]) suppressed IKIR with an average half-time of decline of approximately 400 s. It was demonstrated that the dominant IRK-type 25 pS conductance channel was indeed suppressed by 100 microM preloaded GTP[gamma S]. Reverse transcriptase-polymerase chain reactions (RT-PCR) with RBL cell poly(A)+ RNA identified a full length K+ inward rectifier with 94% base pair homology to the recently cloned mouse IRK1 channel. It is concluded that RBL cells express a classical voltage-dependent IRK-type K+ inward rectifier RBL-IRK1 which is negatively controlled by G proteins.

PMID:
7603835
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center