Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Dev Brain Res. 1995 Apr 18;85(2):181-6.

Age-dependent changes in the regulation by external calcium ions of the phosphorylation of glial fibrillary acidic protein in slices of rat hippocampus.

Author information

Departmento de Bioquímica, Instituto de Biociências UFRGS, Porto Alegre, RS Brazil.


We studied the effect of external Ca2+ on the incorporation of [32P]phosphate into the astrocytic marker protein, glial fibrillary acidic protein (GFAP), in hippocampal slices from rats in the postnatal age range 12-16 days to +60 days (P12-P16 to +P60). At age P12-P16 the presence of Ca2+ in the incubation medium inhibited the incorporation of 32P into GFAP; this inhibition declined to near zero by P21 and subsequently 32P-incorporation became progressively more dependent on Ca2+ until by P60 no GFAP phosphorylation was observed in the absence of Ca2+. With tissue from immature rats inhibition of 32P-incorporation into GFAP started at a medium concentration of 7.5 microM Ca2+, reached 50% at 100 microM and then remained constant up to 1 mM; with adults maximal phosphorylation required 1 mM Ca2+ in the medium. The inorganic Ca(2+)-channel blockers, Co2+ and Ni2+, and a high concentration of the L-type blocker, nifedipine, reversed the effects of external Ca2+ on GFAP phosphorylation. The results suggest a late developmental change in the compartmental disposition of Ca2+ in astrocytes.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center