Bioadhesion technologies for the delivery of peptide and protein drugs to the gastrointestinal tract

Crit Rev Ther Drug Carrier Syst. 1994;11(2-3):119-60.

Abstract

For the efficient delivery of peptides, proteins, and other biopharmaceuticals by nonparenteral routes, in particular via the gastrointestinal, or GI, tract, novel concepts are needed to overcome significant enzymatic and diffusional barriers. In this context, bioadhesion technologies offer some new perspectives. The original idea of oral bioadhesive drug delivery systems was to prolong and/or to intensify the contact between controlled-release dosage forms and the stomach or gut mucosa. However, the results obtained during the past decade using existing pharmaceutical polymers for such purposes were rather disappointing. The encountered difficulties were mainly related to the physiological peculiarities of GI mucus. Nevertheless, research in this area has also shed new light on the potential of mucoadhesive polymers. First, one important class of mucoadhesive polymers, poly(acrylic acid), could be identified as a potent inhibitor of proteolytic enzymes. Second, there is increasing evidence that the interaction between various types of bio(muco)adhesive polymers and epithelial cells has direct influence on the permeability of mucosal epithelia. Rather than being just adhesives, mucoadhesive polymers may therefore be considered as a novel class of multifunctional macromolecules with a number of desirable properties for their use as biologically active drug delivery adjuvants. To overcome the problems related to GI mucus and to allow longer lasting fixation within the GI lumen, bioadhesion probably may be better achieved using specific bioadhesive molecules. Ideally, these bind to surface structures of the epithelial cells themselves rather than to mucus by receptor-ligand-like interactions. Such compounds possibly can be found in the future among plant lectins, novel synthetic polymers, and bacterial or viral adhesion/invasion factors. Apart from the plain fixation of drug carriers within the GI lumen, direct bioadhesive contact to the apical cell membrane possibly can be used to induce active transport processes by membrane-derived vesicles (endo- and transcytosis). The nonspecific interaction between epithelia and some mucoadhesive polymers induces a temporary loosening of the tight intercellular junctions, which is suitable for the rapid absorption of smaller peptide drugs along the paracellular pathway. In contrast, specific endo- and transcytosis may ultimately allow the selectively enhanced transport of very large bioactive molecules (polypeptides, polysaccharides, or polynucleotides) or drug carriers across tight clusters of polarized epi- or endothelial cells, whereas the formidable barrier function of such tissues against all other solutes remains intact.

Publication types

  • Review

MeSH terms

  • Adhesiveness
  • Administration, Oral
  • Carbohydrate Sequence
  • Digestive System / metabolism*
  • Drug Delivery Systems / methods*
  • Molecular Sequence Data
  • Peptides / administration & dosage*
  • Proteins / administration & dosage*

Substances

  • Peptides
  • Proteins