Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 1995 Jul;108 ( Pt 7):2693-703.

Active cyclin B-cdc2 kinase does not inhibit DNA replication and cannot drive prematurely fertilized sea urchin eggs into mitosis.

Author information

1
Laboratoire Arago, Banyuls-sur Mer, France.

Abstract

Feedback mechanisms preventing M phase occurrence before S phase completion are assumed to depend on inhibition of cyclin B-cdc2 kinase activation by unreplicated DNA. In sea urchin, fertilization stimulates protein synthesis and releases eggs from G1 arrest. We found that in the one-cell sea urchin embryo cyclin B-cdc2 kinase undergoes partial activation before S phase, reaching in S phase a level that is sufficient for G2-M phase transition. S phase entry is not inhibited by this level of cyclin B-dependent kinase activity. Inhibition of DNA replication by aphidicolin suppresses nuclear envelope breakdown, yet it does not prevent the microtubule array from being converted from its interphasic to its mitotic state. Moreover, mitotic cytoplasmic events occur at the same time in control and aphidicolin-treated embryos. Thus unreplicated DNA only prevents mitotic nuclear, not cytoplasmic, events from occurring prematurely. These results together show that the inhibition of cyclin B-cdc2 kinase activation is probably not the only mechanism that prevents mitotic nuclear events from occurring as long as DNA replication has not been completed. In contrast, cytoplasmic mitotic events seem to be controlled by a timing mechanism independent of DNA replication, set up at fertilization, that prevents premature opening of a window for mitotic events.

PMID:
7593310
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center