Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1995 Nov 3;270(44):26326-31.

Structural and mechanistic studies of galactoside acetyltransferase, the Escherichia coli LacA gene product.

Author information

  • 1Department of Biochemistry, University of Leicester, United Kingdom.


Escherichia coli galactoside acetyltransferase (GAT) is a member of a large family of acetyltransferases that O-acetylate dissimilar substrates but share limited sequence homology. Steady-state kinetic analysis of over-expressed GAT demonstrated that it accepted a range of substrates, including glucosides and lactosides which were acetylated at rates comparable to galactosides. GAT was shown to be a trimeric acetyltransferase by cross-linking with dimethyl suberimidate. Fluorometric analysis of coenzyme A binding showed that there is a fluorescence quench associated with acetyl-CoA binding whereas CoA has no effect. This difference was exploited to measure dissociation rates for both CoA and acetyl-CoA by stopped-flow fluorometry. The rate of dissociation of CoA (2500 s-1) is at least 170-fold faster than kcat for any substrate tested. The fluorescence response to acetyl-CoA binding is entirely due to Trp-139 since replacement by phenylalanine completely abolished the fluorescence quench. Treatment of GAT by [14C]iodoacetamide resulted in complete inactivation of the enzyme and the incorporation of label into histidyl and cysteinyl residues to approximately equal extents. Following replacement of His-115 by alanine, label was incorporated solely into cysteinyl residues. Furthermore, the substitution results in an 1800-fold decrease in kcat suggesting that His-115 has an important catalytic role in GAT.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center