Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1995 Oct 13;270(41):24435-41.

Insulin activates nuclear factor kappa B in mammalian cells through a Raf-1-mediated pathway.

Author information

  • 1INSERM U.402, Laboratoire de Biologie Cellulaire, Faculté de Médecine Saint-Antoine, Paris, France.

Abstract

We examined the effect of insulin on nuclear factor kappa B (NF-kappa B) activity in Chinese ovary (CHO) cells overexpressing wild-type (CHO-R cells) or -defective insulin receptors mutated at Tyr1162 and Tyr1163 autophosphorylation sites (CHO-Y2 cells). In CHO-R cells, insulin caused a specific, time-, and concentration-dependent activation of NF-kappa B. The insulin-induced DNA-binding complex was identified as the p50/p65 heterodimer. Insulin activation of NF-kappa B: 1) was related to insulin receptor number and tyrosine kinase activity since it was markedly reduced in parental CHO cells which proved to respond to insulin growth factor-1 and phorbol 12-myristate 13-acetate (PMA) activation, and was dramatically decreased in CHO-Y2 cells; 2) persisted in the presence of cycloheximide and was blocked by pyrrolidine dithiocarbamate, aspirin and sodium salicylate, three compounds interfering with I kappa B degradation and/or NF-kappa B.I kappa B complex dissociation; 3) was independent of both PMA-sensitive and atypical (zeta) protein kinases C; and 4) was dependent on Raf-1 kinase activity since insulin-stimulated NF-kappa B DNA binding activity was inhibited by 8-bromo-cAMP, a Raf-1 kinase inhibitor. Moreover, insulin activation of NF-kappa B-driven luciferase reporter gene expression was blocked in CHO-R cells expressing a Raf-1 dominant negative mutant. This is the first evidence that insulin activates NF-kappa B in mammalian cells through a post-translational mechanism requiring both insulin receptor tyrosine kinase and Raf-1 kinase activities.

PMID:
7592658
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center