Send to

Choose Destination
Curr Biol. 1995 Aug 1;5(8):923-30.

LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes.

Author information

Institut de Pathologie et de Génétique de Loverval, Gerpinnes, Belgium.



Major histocompatibility complex (MHC) class I molecules present short peptides generated by intracellular protein degradation to cytotoxic T lymphocytes (CTL). The multisubunit, non-lysosomal proteinases known as proteasomes have been implicated in the generation of these peptides. Two interferon-gamma (IFN-gamma)-inducible proteasome subunits, LMP2 and LMP7, are encoded within the MHC gene cluster in a region associated with antigen presentation. The incorporation of these LMP subunits into proteasomes may alter their activity so as to favour the generation of peptides able to bind to MHC class I molecules. It has been difficult, however, to demonstrate a specific requirement for LMP2 or LMP7 in the presentation of peptide epitopes to CTL.


We describe a T-cell lymphoma, termed SP3, that displays a novel selective defect in MHC class I-restricted presentation of influenza virus antigens. Of the MHC-encoded genes implicated in the class I pathway, only LMP2 is underexpressed in SP3 cells. Expression of IFN-gamma in transfected SP3 cells simultaneously restores LMP2 expression and antigen presentation to CTL. Expression of antisense-LMP2 mRNA in these IFN-gamma-transfected cells selectively represses antigen recognition and the induction of surface class I MHC expression. Moreover, the expression of this antisense-LMP2 mRNA in L929 fibroblast cells, which constitutively express LMP2 and have no presentation defect, blocks the presentation of the same influenza virus antigens that SP3 cells are defective in presenting.


Our results show that the LMP2 proteasome subunit can directly influence both MHC class I-restricted antigen presentation and class I surface expression.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center