Send to

Choose Destination
Anat Rec. 1995 Jul;242(3):289-301.

Trans-Golgi network (TGN) of different cell types: three-dimensional structural characteristics and variability.

Author information

Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada.



The trans-Golgi network (TGN) is generally considered as a distinct and permanent structural compartment of the Golgi apparatus of various cell types. To verify this postulate we examined and compared the three-dimensional characteristics of the TGNs of 14 different mammalian cell types as presented in our various publications since 1979 when we initially described the trans-tubular network of Sertoli cells.


In all these studies we used low and high voltage electron microscopes on thin or thick sections of tissues fixed with glutaraldehyde and postfixed with reduced osmium. The sections were stained with uranyl acetate and lead citrate. Stereopairs, prepared from photographs of tilted specimens, permitted a direct observation of the three-dimensional structure of the various elements of the Golgi apparatus.


The TGNs are multilayered and extensive in cells which do not form large typical secretory granules (Sertoli cells, nonciliated cells of ductuli efferentes, spinal ganglion cells) but have an extensive lysosomal system. The TGN is absent in cells forming very large secretory granules (secretory cells of seminal vesicles and lactating mammary glands). The TGNs are small in cells producing small to medium-size secretory granules and/or appear as residual fragments on the trans aspect of the Golgi stacks (e.g., mucous cells of Brunner's gland, pancreatic acinar cells, etc.). In cells with multiple and extensive TGNs, a continuity of these tubular networks with the two or three transmost saccules of the stack is observed but there are seemingly no connections between the TGNs. Whenever the TGNs are present, they do not form a continuous structure along the Golgi ribbon. However, they do present, in all cases, configurations suggestive of desquamation and renewal.


The structure of the TGN varies considerably from one cell type to another, being extensive in cells not showing typical secretory granules but having an extensive lysosomal system, while in secretory cells showing small or large secretory granules the TGN is either small or even entirely absent.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center