Structure-activity studies on scorpion toxins that block potassium channels

Toxicon. 1995 Apr;33(4):425-36. doi: 10.1016/0041-0101(94)00181-7.

Abstract

Scorpion venoms contain toxins that block different types of potassium channels. Some of these toxins have affinity for high conductance Ca(2+)-activated K+ channels and for dendrotoxin-sensitive voltage-dependent K+ channels. The structural features that determine the specificity of binding to different channel types are not known. We investigated this using natural and synthetic scorpion toxins. We have tested the effects of charybdotoxin (CTX) and two homologues (Lqh 15-1 and Lqh 18-2), iberiotoxin (IbTX), and kaliotoxin (KTX) from the scorpions Leiurus quinquestriatus hebreus, Buthus tamulus and Androctonus mauretanicus mauretanicus, respectively, and synthetic variants of CTX, namely CTX2-37, CTX3-37, CTX4-37, and CTX7-37, on a Ca(2+)-activated K+ current (IK-Ca) at a mammalian motor nerve terminal, and on the binding of a radiolabelled dendrotoxin, 125I-DpI, to voltage-dependent K+ channels on rat brain synaptosomal membranes. The native toxins contain 37-38 amino acid residues, they are over 30% identical in sequence (CTX and IbTX are 68% identical), and they have similar three-dimensional conformations. All toxins, except IbTX, displaced 125I-DpI from its synaptosomal binding sites: Lqh 18-2 (Ki = 0.25 nM), KTX (Ki = 2.1 nM), CTX (Ki = 3.8 nM), CTX2-37, (Ki = 30 nM), Lqg 15-1 (Ki = 50 nM), CTX3-37 (Ki = 60 nM), CTX4-37 (Ki = 50 nM), CTX7-37 (Ki = 105 nM). IbTX had no effect at 3 microM. When variants of CTX with deletions at the N-terminal portion were tested for their activity on IK-Ca on motor nerve terminals in mouse triangularis sterni nerve-muscle preparations, CTX3-37 and CTX4-37 were ineffective at 100 nM; and CTX7-37 was ineffective at up to 1 microM. IbTX and CTX (100 nM) completely blocked IK-Ca, but KTX (100 nM) did not affect the nerve terminal IK-Ca. Different residues appear to be important for interactions of the toxins with different K+ channels. IbTX did not displace dendrotoxin binding, but it did block IK-Ca, whereas KTX was as active as CTX against dendrotoxin binding but it did not affect the IK-Ca of the motor nerve terminals. The N-terminal section of the toxins appears to be particularly involved in block of IK-Ca at the motor nerve terminal: it is truncated in the inactive synthetic CTX variants; and it is positively charged at lysine-6 in KTX (which is inactive), but negatively charged in IbTX and neutral in CTX.(ABSTRACT TRUNCATED AT 400 WORDS)

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Calcium / physiology
  • Charybdotoxin / pharmacology
  • Electrophysiology
  • In Vitro Techniques
  • Mice
  • Mice, Inbred BALB C
  • Molecular Sequence Data
  • Motor Neurons / drug effects
  • Motor Neurons / metabolism
  • Nerve Endings / drug effects
  • Nerve Endings / metabolism
  • Neuromuscular Junction / drug effects
  • Potassium Channels / drug effects*
  • Rats
  • Scorpion Venoms / toxicity*
  • Structure-Activity Relationship
  • Synaptic Membranes / drug effects
  • Synaptic Membranes / metabolism
  • Synaptosomes / drug effects
  • Synaptosomes / metabolism

Substances

  • Potassium Channels
  • Scorpion Venoms
  • Charybdotoxin
  • Calcium