Format

Send to

Choose Destination
Oral Microbiol Immunol. 1995 Jun;10(3):183-7.

Characterization of glutamine transport in Streptococcus mutans.

Author information

1
Biochemistry and Molecular Biology Unit, School of Dental Science, University of Melbourne, Australia.

Abstract

Glutamine transport in glucose-energized cells of Streptococcus mutans Ingbritt exhibited Michaelis-Menten-type kinetics with a Vmax of 13.4 nmol/mg dry weight/min and a Kt of 4.1 microM. Diffusion of glutamine into de-energized cells of S. mutans displayed similar type kinetics, with a Kt of 6.8 microM but with a markedly reduced Vmax of 53.9 pmol/mg dry weight/min. Glutamine transport in S. mutans is not proton motive force-driven, as the intracellular accumulation of glutamine by energized cells far exceeded the thermodynamic limits of the proton motive force, and the dissipation of this proton motive force by gramicidin in a high K+ medium did not decrease the intracellular glutamine concentration. Glutamine transport is therefore likely to be energized by ATP hydrolysis. The activity of the transporter was maximal between pH 6.0 and 7.0 and decreased rapidly above pH 7.0. The transport of glutamine was not competitively inhibited by asparagine, glutamate or aspartate, indicating a specific glutamine transport system. Reversed-phase high-pressure liquid chromatography of cell extracts revealed that approximately 26% of the glutamine taken into the cell was converted to glutamate within 10 min. The results are consistent with transported glutamine being converted to glutamate and ammonia by the action of an intracellular glutaminase. Glutamine therefore may be an important source of nitrogen for the cell.

PMID:
7567068
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center