Send to

Choose Destination
Neurochem Res. 1995 Jun;20(6):727-36.

Methylfolate modulates potassium evoked neuro-secretion: evidence for a role at the pteridine cofactor level of tyrosine 3-hydroxylase.

Author information

University of Leeds, Department of Clinical Medicine, General Infirmary at Leeds, UK.


We have previously shown that 5-methyltetrahydrofolate influences neuro-secretion. The present study more precisely characterises the processes involved and considers one probable site of action. Focusing on the tyrosine-noradrenalin axis in cerebellum we showed 5-methyltetrahydrofolate causes a significant reduction in the apparent K+ evoked secretion of noradrenalin to only 12.9% of control release. Evidence supports the idea that this could actually be due to increased synthesis leading to; depletion of reserves, possibly through leakage, exocytotic inhibition via activation of presynaptic receptors or end product inhibition by noradrenalin at the pteridine cofactor level of tyrosine hydroxylase: a) concomitant decreased measurement of perfusate and intracellular tyrosine with released noradrenalin following 5-methyltetrahydrofolate treatment supports the idea of increased transmitter turn over; b) kinetic studies indicate that at saturating concentrations of tyrosine and in the presence of an inhibitor of L-DOPA decarboxylase, 5-methyltetrahydrofolate partially duplicates the rate limiting behaviour of a synthetic pteridine cofactor--DL,2-amino-4-hydroxy-6,7,dimethyltetrahydropteridine. We debate whether, in vivo, CSF 5-methyltetrahydrofolate might interact at the tetrahydrobiopterin cofactor level of tyrosine hydroxylase and other aromatic amino-acid hydroxylases.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center