Send to

Choose Destination
See comment in PubMed Commons below
Development. 1995 Sep;121(9):3045-55.

frizzled regulates mirror-symmetric pattern formation in the Drosophila eye.

Author information

Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.


Coordinated morphogenesis of ommatidia during Drosophila eye development establishes a mirror-image symmetric pattern across the entire eye bisected by an anteroposterior equator. We have investigated the mechanisms by which this pattern formation occurs and our results suggest that morphogenesis is coordinated by a graded signal transmitted bidirectionally from the presumptive equator to the dorsal and ventral poles. This signal is mediated by frizzled, which encodes a cell surface transmembrane protein. Mosaic analysis indicates that frizzled acts non-autonomously in an equatorial to polar direction. It also indicates that relative levels of frizzled in photoreceptor cells R3 and R4 of each ommatidium affect their positional fate choices such that the cell with greater frizzled activity becomes an R3 cell and the cell with less frizzled activity becomes an R4 cell. Moreover, this bias affects the choice an ommatidium makes as to which direction to rotate. Equator-outwards progression of elav expression and expression of the nemo gene in the morphogenetic furrow are regulated by frizzled, which itself is dynamically expressed about the morphogenetic furrow. We propose that frizzled mediates a bidirectional signal emanating from the equator.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center